Studies of antistasin, a potent factor Xa inhibitor with anticoagulant properties, were performed wherein the properties of the full-length antistasin polypeptide (ATS-119) were compared with the properties of forms of antistasin truncated at residue 116 (ATS-116) and residue 112 (ATS-112). ATS-119 was 40-fold more potent than ATS-112 in prolonging the activated partial thromboplastin time (APTT), whereas ATS-119 inhibited factor Xa 2.2-fold less avidly and about 5-fold more slowly than did ATS-112. The decreased reactivity of ATS-119 suggests that the carboxyl-terminal domain of ATS-119 stabilizes an ATS conformation with a reduced reactivity toward factor Xa. The observation that calcium ion increases the reactivity of ATS-119 but not that of ATS-112 suggests that calcium ion may disrupt interactions involving the carboxyl terminus of ATS-119. Interestingly, ATS-119 inhibited factor Xa in the prothrombinase complex 2-6-fold more potently and 2-3-fold faster than ATS-112. These differences in affinity and reactivity might well account for the greater effectiveness of ATS-119 in prolonging the APTT and suggest that the carboxyl-terminal domain of ATS-119 disrupts interactions involving phospholipid, factor Va, and prothrombin in the prothrombinase complex. The peptide RPKRKLIPRLS, corresponding to the carboxyl domain of ATS-119 prolonged the APTT and inhibited prothrombinase-catalyzed processing of prothrombin, but it failed to inhibit the catalytic activity of isolated factor Xa. Thus, this novel inhibitor appears to exert its inhibitory effects at a site removed from the active site of factor Xa.