Sacral foramen neuromodulation--initially applied for the treatment of urinary incontinence--has proved to be effective in patients with chronic urinary retention. Thus far, the underlying neurophysiological mechanisms have not been elucidated. In an experimental study on the neurophysiological basis of sacral neurostimulation, one objective was to investigate the mechanisms responsible for initiation of micturition in chronic urinary retention. In ten female cats anesthetized with alpha-chloralose the clinical situation of sacral foramen stimulation was experimentally reproduced by isolated S2 nerve stimulation after L6-S3 laminectomy. Stimulation responses were recorded from the bladder, peripheral nerves, and striated muscles of the foot and pelvic floor. The effect of sudden cessation of prolonged S2 stimulation, during which the bladder was completely inhibited, was evaluated in 70 stimulation sequences in 5 cats. Sacral nerve stimulation induced excitatory and inhibitory effects on the bladder, depending on the frequency and intensity of stimulation. With unilateral S2 stimulation, bladder excitation was best at frequencies of 2-5 Hz and at intensities ranging between 0.8 and 1.4 times the threshold for the M-response of the foot muscle. Inhibition was the dominating effect at frequencies of 7-10 Hz and at intensities exceeding 1.4 times the threshold. Prolonged S2 stimulation above the threshold produced complete bladder inhibition during stimulation but induced strong bladder contractions after sudden interruption of stimulation, with amplitudes being significantly higher than that of spontaneous contractions preceding the stimulation. These results confirm the hypothesis of a "rebound" phenomenon as the mechanism of action for induction of spontaneous voiding in patients with chronic urinary retention.