The commercial antibiotic bicyclomycin (Bcm) has been shown to target the essential transcription termination factor Rho in Escherichia coli. Little is known about the Bcm binding domain in Rho. A recent structure-activity relationship study led us to evaluate the reductive amination probe, 5a-(3-formylanilino)dihydrobicyclomycin (FD-Bcm). Biochemical studies showed that FD-Bcm possessed inhibitory activities comparable to Bcm in Rho-dependent ATPase and transcription termination assays. Incubation of Rho with FD-Bcm, ATP, and poly(C) followed by NaBH4 reduction and dialysis led to an appreciable loss of ATPase activity. Inclusion of Bcm with FD-Bcm in the reductive amination reaction protected Rho, indicating that Bcm and FD-Bcm competed for the same binding site in Rho. Incubation of Rho with FD-Bcm and poly(C) followed by NaBH4 reduction provided a sample with residual ATPase activity (12%). Mass spectrometric analysis indicated the presence of two proteins in an approximate 1.2:1 ratio, whose masses corresponded to wild-type Rho (47,010 Da) and lysine-modified Rho (47,417 Da), respectively. Trypsin digestion of the Rho sample followed by high performance liquid chromatography separation and tandem mass spectrometry analysis identified the site of modification as Lys181 within the combined tryptic fragment, Gly-Leu-Ile-Val-Ala-Pro-Pro-Lys-Ala-Gly-Lys (residues 174-184). Similar analysis of a lesser modified sample (following incubation with inclusion of ATP) showed that addition had again occurred at Lys181. These findings provide the first structural information concerning the site of Bcm binding in Rho.