Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

14 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Deep Learning-based Unsupervised Domain Adaptation via a Unified Model for Prostate Lesion Detection Using Multisite Biparametric MRI Datasets.
Li H, Liu H, von Busch H, Grimm R, Huisman H, Tong A, Winkel D, Penzkofer T, Shabunin I, Choi MH, Yang Q, Szolar D, Shea S, Coakley F, Harisinghani M, Oguz I, Comaniciu D, Kamen A, Lou B. Li H, et al. Among authors: shabunin i. Radiol Artif Intell. 2024 Sep;6(5):e230521. doi: 10.1148/ryai.230521. Radiol Artif Intell. 2024. PMID: 39166972 Free PMC article.
Automated deep-learning system in the assessment of MRI-visible prostate cancer: comparison of advanced zoomed diffusion-weighted imaging and conventional technique.
Hu L, Fu C, Song X, Grimm R, von Busch H, Benkert T, Kamen A, Lou B, Huisman H, Tong A, Penzkofer T, Choi MH, Shabunin I, Winkel D, Xing P, Szolar D, Coakley F, Shea S, Szurowska E, Guo JY, Li L, Li YH, Zhao JG. Hu L, et al. Among authors: shabunin i. Cancer Imaging. 2023 Jan 17;23(1):6. doi: 10.1186/s40644-023-00527-0. Cancer Imaging. 2023. PMID: 36647150 Free PMC article.
A concurrent, deep learning-based computer-aided detection system for prostate multiparametric MRI: a performance study involving experienced and less-experienced radiologists.
Labus S, Altmann MM, Huisman H, Tong A, Penzkofer T, Choi MH, Shabunin I, Winkel DJ, Xing P, Szolar DH, Shea SM, Grimm R, von Busch H, Kamen A, Herold T, Baumann C. Labus S, et al. Among authors: shabunin i. Eur Radiol. 2023 Jan;33(1):64-76. doi: 10.1007/s00330-022-08978-y. Epub 2022 Jul 28. Eur Radiol. 2023. PMID: 35900376
Detection and PI-RADS classification of focal lesions in prostate MRI: Performance comparison between a deep learning-based algorithm (DLA) and radiologists with various levels of experience.
Youn SY, Choi MH, Kim DH, Lee YJ, Huisman H, Johnson E, Penzkofer T, Shabunin I, Winkel DJ, Xing P, Szolar D, Grimm R, von Busch H, Son Y, Lou B, Kamen A. Youn SY, et al. Among authors: shabunin i. Eur J Radiol. 2021 Sep;142:109894. doi: 10.1016/j.ejrad.2021.109894. Epub 2021 Aug 5. Eur J Radiol. 2021. PMID: 34388625
A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study.
Winkel DJ, Tong A, Lou B, Kamen A, Comaniciu D, Disselhorst JA, Rodríguez-Ruiz A, Huisman H, Szolar D, Shabunin I, Choi MH, Xing P, Penzkofer T, Grimm R, von Busch H, Boll DT. Winkel DJ, et al. Among authors: shabunin i. Invest Radiol. 2021 Oct 1;56(10):605-613. doi: 10.1097/RLI.0000000000000780. Invest Radiol. 2021. PMID: 33787537
[Multiparametric magnetic resonance imaging markers of clinically significant prostate cancer].
Goncharuk DA, Veliev EI, Loran OB, Paklina OV, Setdikova GR, Shabunin IV, Sokolov EA. Goncharuk DA, et al. Among authors: shabunin iv. Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med. 2019 Aug;27(Special Issue):559-564. doi: 10.32687/0869-866X-2019-27-si1-559-564. Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med. 2019. PMID: 31747147 Russian.
14 results