Plasmonic nanogaps in strongly coupled metal nanostructures can confine light to nanoscale regions, leading to huge electric field enhancement. This unique capability makes plasmonic nanogaps powerful platforms for boosting light-matter interactions, thereby enabling the rapid development of novel phenomena and applications. This review traces the progress of nanogap systems characterized by well-defined morphologies, controllable optical responses, and a focus on achieving extreme performance. The properties of plasmonic gap modes in far-field resonance and near-field enhancement are explored and a detailed comparative analysis of nanogap fabrication techniques down to sub-nanometer scales is provided, including bottom-up, top-down, and their combined approaches. Additionally, recent advancements and applications across various frontier research areas are highlighted, including surface-enhanced spectroscopy, plasmon-exciton strong coupling, nonlinear optics, optoelectronic devices, and other applications beyond photonics. Finally, the challenges and promising emerging directions in the field are discussed, such as light-driven atomic effects, molecular optomechanics, and alternative new materials.
Keywords: hotspots; hybridization theory; plasmonic nanogaps; strong coupling; surface‐enhanced spectroscopy.
© 2024 Wiley‐VCH GmbH.