Background: Yellow-feathered chickens (YFCs) have a long history in China. They are well-known for the nutritional and commercial importance attributable to their yellow color phenotype. Currently, there is a huge paucity in knowledge of the genetic determinants responsible for phenotypic and biochemical properties of these iconic chickens. This study aimed to uncover the genetic structure and the molecular underpinnings of the YFCs trademark coloration.
Results: The whole-genomes of 100 YFCs from 10 major traditional breeds and 10 Huaibei partridge chickens from China were re-sequenced. Comparative population genomics based on autosomal single nucleotide polymorphisms (SNPs) revealed three geographically based clusters among the YFCs. Compared to other Chinese indigenous chicken genomes incorporated from previous studies, a closer genetic proximity within YFC breeds than between YFC breeds and other chicken populations is evident. Through genome-wide scans for selective sweeps, we identified RALY heterogeneous nuclear ribonucleoprotein (RALY), leucine rich repeat containing G protein-coupled receptor 4 (LGR4), solute carrier family 23 member 2 (SLC23A2), and solute carrier family 2 member 14 (SLC2A14), besides the classical beta-carotene dioxygenase 2 (BCDO2), as major candidates pigment determining genes in the YFCs.
Conclusion: We provide the first comprehensive genomic data of the YFCs. Our analyses show phylogeographical patterns among the YFCs and potential candidate genes giving rise to the yellow color trait of the YFCs. This study lays the foundation for further research on the genome-phenotype cross-talks that define important poultry traits and for formulating genetic breeding and conservation strategies for the YFCs.
Keywords: BCDO2; Breeding; Chicken; Color; Genetic diversity; Genome; Yellow.