Early-stage low nitrogen priming promotes root growth and delays leaf senescence through gene expression, enhancing nitrogen absorption and assimilation in wheat seedlings, thereby alleviating growth inhibition under nitrogen deficit stress and supporting normal seedling development. Verifying the strategies to reduce the amount of nitrogen (N) fertilizer while maintaining high crop yields is important for improving crop N use efficiency (NUE) and protecting the environment. To determine whether low N (LN) priming (LNP) can alleviate the impact of N-deficit stress on the growth of wheat seedlings and improve their tolerance to N-deficit stress, we conducted hydroponic experiments using two wheat cultivars, Yangmai 158 (YM158, LN tolerant) and Zaoyangmai (ZYM, LN sensitive) to study the effects of LNP on wheat seedlings under N-deficit stress. N-deficit stress decreased the plant dry weight, leaf area, and leaf N content (LNC), while LNP could significantly reduce this reduction. Distinct sensitivities to N-deficit stress were observed between the wheat cultivars, with ZYM showing an early decrease in leaf N content compared to YM158, which exhibited a late-stage reduction. LNP promoted root growth, expanded N uptake area, and upregulated the expression of TaNRT1.1, TaNRT2.1, and TaNRT2.2 in wheat seedlings, suggesting that LNP can enhance root N uptake capacity to increase N accumulation in plants. In addition, LNP improved the activity of glutamine synthase (GS) to enhance the capacity of N assimilation of plants. The relative expression of TaGS1 in the lower leaves of priming and stress (PS) was lower than that of no priming and stress (NS) after LNP, indicating that the rate of N transfer from the lower leaves to the upper leaves became slower after LNP, which alleviated the senescence of the lower leaves. The relative expression of TaGS2 was significantly increased, which might be related to the enhanced photorespiratory ammonia assimilation capacity after LNP, which reduced the N loss and maintained higher LNC. Therefore, LNP in the early stage can improve the N absorption and assimilation ability and maintain the normal N supply to alleviate the inhibition of N-deficit stress in wheat seedlings.
Keywords: Low nitrogen; Nitrogen assimilation; Nitrogen uptake; Priming; Root growth; Wheat.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.