Redox Regulation in Age-Related Cataracts: Roles for Glutathione, Vitamin C, and the NRF2 Signaling Pathway

Nutrients. 2023 Jul 29;15(15):3375. doi: 10.3390/nu15153375.

Abstract

Age is the biggest risk factor for cataracts, and aberrant oxidative modifications are correlated with age-related cataracts, suggesting that proper redox regulation is important for lens clarity. The lens has very high levels of antioxidants, including ascorbate and glutathione that aid in keeping the lens clear, at least in young animals and humans. We summarize current functional and genetic data supporting the hypothesis that impaired regulation of oxidative stress leads to redox dysregulation and cataract. We will focus on the essential endogenous antioxidant glutathione and the exogenous antioxidant vitamin C/ascorbate. Additionally, gene expression in response to oxidative stress is regulated in part by the transcription factor NRF2 (nuclear factor erythroid 2-related factor 2 [NFE2L2]), thus we will summarize our data regarding cataracts in Nrf2-/- mice. In this work, we discuss the function and integration of these capacities with the objective of maintaining lens clarity.

Keywords: NRF2; ascorbate/vitamin C; glutathione; lens; redox.

Publication types

  • Review

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Ascorbic Acid
  • Cataract* / genetics
  • Cataract* / metabolism
  • Glutathione / metabolism
  • Humans
  • Mice
  • NF-E2-Related Factor 2* / metabolism
  • Oxidation-Reduction
  • Oxidative Stress
  • Reactive Oxygen Species / metabolism
  • Signal Transduction
  • Vitamins

Substances

  • NF-E2-Related Factor 2
  • Ascorbic Acid
  • Reactive Oxygen Species
  • Antioxidants
  • Glutathione
  • Vitamins