Fucoidan is a fucose-rich sulfated polysaccharide typically found in the cell wall of marine algae but also recently isolated from terrestrial sources. Due to a variety of biological activities, including antioxidant properties, fucoidan exhibits an attractive therapeutic potential against a wide array of metabolic diseases associated with oxidative stress. We used FTIR, 1H NMR and 13C NMR spectroscopy to investigate the structural features of a fucoidan fraction extracted from the brown alga Cystoseira compressa (CYS). The antioxidant potential of CYS was measured by DPPH, ABTS and FRAP assays, which revealed a radical scavenging capacity that was confirmed in in vitro cellular models of hepatic and endothelial cells. The same antioxidant effects were observed for another fucoidan fraction previously identified in the terrestrial tree Eucalyptus globulus (EUC). Moreover, in hepatic cells, CYS and EUC exhibited a significant antisteatotic action, being able to reduce intracellular triglyceride content through the regulation of key genes of hepatic lipid metabolism. EUC exerted stronger antioxidant and antisteatotic effects as compared to CYS, suggesting that both marine and terrestrial sources should be considered for fucoidan extraction and therapeutic applications.
Keywords: Cystoseira compressa; Eucalyptus globulus; NAFLD; antioxidant; antisteatotic; fucoidan.