Assessing donor/recipient HLA compatibility at the eplet level requires second field DNA typings but these are not always available. These can be estimated from lower-resolution data either manually or with computational tools currently relying, at best, on data containing typing ambiguities. We gathered NGS typing data from 61,393 individuals in 17 French laboratories, for loci A, B, and C (100% of typings), DRB1 and DQB1 (95.5%), DQA1 (39.6%), DRB3/4/5, DPB1, and DPA1 (10.5%). We developed HaploSFHI, a modified iterative maximum likelihood algorithm, to impute second field HLA typings from low- or intermediate-resolution ones. Compared with the reference tools HaploStats, HLA-EMMA, and HLA-Upgrade, HaploSFHI provided more accurate predictions across all loci on two French test sets and four European-independent test sets. Only HaploSFHI could impute DQA1, and solely HaploSFHI and HaploStats provided DRB3/4/5 imputations. The improved performance of HaploSFHI was due to our local and nonambiguous data. We provided explanations for the most common imputation errors and pinpointed the variability of a low number of low-resolution haplotypes. We thus provided guidance to select individuals for whom sequencing would optimize incompatibility assessment and cost-effectiveness of HLA typing, considering not only well-imputed second field typing(s) but also well-imputed eplets.
Keywords: HLA; eplets; histocompatibility; imputation; next‐generation sequencing (NGS).
© 2023 The Authors. HLA: Immune Response Genetics published by John Wiley & Sons Ltd.